Midterm 3 Equations, Chem 125H, Fall 2020 NJIT

Bond order $=[(\#$ of bonding electrons $)-(\#$ of antibonding electrons $)] / 2$
Hooke's Law: $\mathrm{F}=-\mathrm{k}\left(\mathrm{R}-\mathrm{R}_{\mathrm{e}}\right)$
$v=\frac{1}{2 \pi} \sqrt{\frac{k}{\mu}}$
$\mu=\frac{\left(m_{1}\right)\left(m_{2}\right)}{m_{1}+m_{2}}$
$E_{\mathrm{v}}=h v_{0}\left(\mathrm{v}+\frac{1}{2}\right)$
$E_{J}=\frac{h^{2}}{8 \pi^{2} I} J(J+1)=h B J(J+1)$
$I=\mu R_{e}{ }^{2}$

Bragg Law: $\mathrm{n} \lambda=2 \mathrm{~d} \sin \theta$

Clausius-Clapeyron Equation:
$\ln \left(\frac{P_{\text {vap }}^{T_{1}}}{P_{\text {vap }}^{T_{2}}}\right)=\frac{\Delta H_{\text {vap }}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$

Mass percent $=\left(\frac{\text { grams of solute }}{\text { grams of solution }}\right) \times 100$
Mole fraction of component $\mathrm{A}=\chi_{A}=\frac{n_{A}}{n_{A}+n_{B}+\ldots}$
Molality $=\frac{\text { moles of solute }}{\text { kilograms of solvent }}$
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
Henry's Law: $\mathrm{P}=\mathrm{k}_{\mathrm{H} \chi}$ or $\mathrm{P}=\mathrm{kC}$

Raoult's Law:
$\mathrm{P}_{\text {solution }}=\chi_{\text {solvent }} \mathrm{P}^{\circ}{ }_{\text {solvent }}$
$\mathrm{P}_{\text {Total }}=\mathrm{P}_{\mathrm{a}}+\mathrm{P}_{\mathrm{b}}=\chi_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{\circ}+\chi_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}^{\circ}$
$\Delta \mathrm{T}=\mathrm{K}_{\mathrm{b}} m_{\text {solute }}$
$\Delta \mathrm{T}=\mathrm{K}_{\mathrm{f}} m_{\text {solute }}$
$\pi=$ MRT
van't Hoff factor,
$i=\frac{\text { moles of particles in solution }}{\text { moles of solute dissolved }}$
$\Delta \mathrm{T}=i \mathrm{~K}_{\mathrm{b}} m_{\text {solute }}$
$\Delta \mathrm{T}=i \mathrm{~K}_{\mathrm{f}} m_{\text {solute }}$
$\pi=i \mathrm{MRT}$

