Midterm II Equations

Gases

Pressure $=$ Force/Area
Ideal gas law: $\mathrm{PV}=\mathrm{nRT}$
Dalton's Law of Partial Pressures: $P_{\text {total }}=P_{1}+P_{2}+P_{3} \ldots . .=n_{1} R T / V+n_{2} R T / V+n_{3} R T / V$
$\mathrm{X}_{1}=\frac{n_{1}}{n_{\text {total }}}=\frac{n_{1}}{n_{1}+n_{2}+n_{3}+\ldots} \quad \mathrm{X}_{1}=\frac{P_{1}}{P_{\text {Total }}}$
$\frac{P V}{n}=R T=\frac{2}{3}(K E)_{\text {avg }}$
$(K E)_{\text {avg }}=\frac{3}{2} R T$
$u_{r m s}=\sqrt{\overline{u^{2}}}=\sqrt{\frac{3 R T}{N_{A} m}}=\sqrt{\frac{3 R T}{M}}$
Maxwell-Boltzmann Distribution Law:
$f(u)=4 \pi\left(\frac{m}{2 k_{B} T}\right)^{3 / 2} u^{2} e^{-m u^{2} / 2 k_{B} T}$
$u_{m p}=\sqrt{\frac{2 R T}{M}}$
$u_{\text {avg }}=\sqrt{\frac{8 R T}{\pi M}}$
Graham's Law of Effusion:
$\frac{\text { Rate of effusion for gas } 1}{\text { Rate of effusion for gas 2 }}=\frac{\sqrt{M_{2}}}{\sqrt{M_{1}}}$
Collision Frequency of a Gas with a Surface:
$Z_{A}=A \frac{N}{V} \sqrt{\frac{R T}{2 \pi M}}$
Collision Frequency of gas particles:
$Z=4 \frac{N}{V} d^{2} \sqrt{\frac{\pi R T}{M}}$

Mean free path:
$\lambda=\frac{1}{Z} \times u_{\text {avg }}=\frac{\mathrm{RT}}{4 \pi \sqrt{2} \mathrm{r}^{2} \mathrm{~N}_{A} \mathrm{P}}$
$\lambda=\frac{\mathrm{k}_{B} \mathrm{~T}}{4 \pi \sqrt{2} \mathrm{r}^{2} \mathrm{P}}$
van der Waals equation:

$$
P_{o b s}=\frac{n R T}{(V-n b)}-a\left(\frac{n}{V}\right)^{2}
$$

Energy, Enthalpy, and Thermochemistry

Kinetic energy:

$$
K E=\frac{1}{2} m v^{2}
$$

Internal energy:
$\Delta E=q+w$
for an expanding gas:
$w=-P \Delta V$
$H=E+P V$
$\Delta E=q_{p}+w$ (constant pressure)
$q_{p}=\Delta E+P \Delta V$ (constant pressure)
$\Delta \mathrm{E}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}$ (constant volume)
$\Delta \mathrm{E}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}+\mathrm{nR} \Delta \mathrm{T}=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{T}$
$\Delta \mathrm{H}=\Delta \mathrm{E}+\Delta(\mathrm{PV})=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{T}$
$\mathrm{C}_{\mathrm{v}}=(3 / 2) \mathrm{R}$
$\mathrm{C}_{\mathrm{p}}=(5 / 2) \mathrm{R}$
$\mathrm{q}=\mathrm{nC} \Delta \mathrm{T}$
$\Delta \mathrm{H}_{\mathrm{rxn}}=\Delta_{\mathrm{f}} \mathrm{H}_{\text {products }}-\Delta_{\mathrm{f}} \mathrm{H}_{\text {reactants }}$

Quantum Mechanics

$\mathrm{E}=\mathrm{h} \nu=\mathrm{hc} / \lambda$
$K E_{\text {electron }}=\frac{1}{2} \mathrm{mv}^{2}=\mathrm{h} v-\mathrm{h} v_{0}$
$\lambda=\frac{h}{m v}$
$\Delta x \cdot \Delta p=\frac{\hbar}{2}=\frac{h}{4 \pi}$
$\mathrm{p}=\mathrm{mv}$
$E=\frac{n^{2} h^{2}}{8 m L^{2}}$
$E_{n}=-\frac{Z^{2}}{n^{2}}\left(\frac{m e^{4}}{8 \varepsilon_{0}{ }^{2} h^{2}}\right)=-2.178 \times 10^{-18} \mathrm{~J}\left(\frac{Z^{2}}{n^{2}}\right)$

Bonding

Lattice Energy $=k \frac{Q_{1} Q_{2}}{r}$
$\Delta H=\sum \mathrm{D}($ bonds broken $)-\sum \mathrm{D}$ (bonds formed $)$

